Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets



online reviews, data mining, sentiment analysis, TripAdvisor, hotel management


This study aims to verify how distinct markets evaluate hotels in the Algarve through the analysis of online reviews, in order to identify if satisfaction and dissatisfaction attributes are similar among some of the main markets of overnight stay tourists in the region. Online reviews of hotels in the Algarve, written in English, French as well as Portuguese and posted on Tripadvisor by British, French and Portuguese residents from January 2019 to December 2019 are analysed. After the analysis of 8,596 online textual reviews, the results demonstrated that not only satisfaction and dissatisfaction rates towards hotel attributes differ according to the language, but also that customers from different countries place dissimilar emphasis on hotel attributes. Besides extending the current research on the use of online reviews, the findings of this study also assist hoteliers to identify improvement opportunities. Although many studies on marketing segmentation through data mining have been conducted, this paper analyses the customer satisfaction of relevant tourist markets and suggests up-to-date practical implications for hoteliers.

Author Biographies

  • Anderson S. Oliveira, Universidade do Algarve
    Escola Superior de Gestão, Hotelaria e Turismo (ESGHT)
  • Ana I. Renda, Universidade do Algarve
    ESGHT & Centro de Investigação, Desenvolvimento e Inovação em Turismo – CiTUR & Centro de Investigação em Turismo, Sustentabilidade e Bem-estar - CinTurs
  • Marisol B. Correia, Universidade do Algarve e Universidade de Lisboa
    ESGHT & Centro de Investigação, Desenvolvimento e Inovação em Turismo – CiTUR & Centro de Investigação em Turismo, Sustentabilidade e Bem-estar - CinTurs, Universidade do Algarve & CEG-IST, Instituto Superior Técnico, Universidade de Lisboa
  • Nuno Antonio, Universidade Nova de Lisboa
    NOVA Information Management School


Ahani, A., Nilashi, M., & Ibrahim, O. (2019a). Travellers segmentation and choice prediction through online reviews: The case of Wellington’s hotels in New Zealand. Journal of Soft Computing and Decision Support Systems, 6(5), 23-30.

Ahani, A., Nilashi, M., Ibrahim, O., Sanzogni, L., & Weaven, S. (2019b). Market segmentation and travel choice prediction in spa hotels through TripAdvisor’s online reviews. International Journal of Hospitality Management, 80, 52-77.

Ahani, A., Nilashi, M., Yadegaridehkordi, E., Sanzogni, L., Tarik, A., Knox, K., Samad, S., & Ibrahim, O. (2019c). Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services, 51, 331-343.

Antonio, N., De Almeida, A., Nunes, L., Batista, F., & Ribeiro, R. (2018). Hotel online reviews: different languages, different opinions. Information Technology & Tourism, 18(1-4), 157-185.

Ban, H., Choi, H., Choi, E., Lee, S., & Kim, H. (2019). Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability, 11(23), 65-70.

Bayer, R., & Emir, O. (2017). Examination of urban hotels’ online review site performance with a comparative approach based on TripAdvisor and Booking. Journal of Business Research Turk, 9(3), 72-85.

Çal?, S., & Balaman, ?. (2019). Improved decisions for marketing, supply and purchasing: Mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment. Computers & Industrial Engineering, 129, 315-332.

Duan, W., Yu, Y., Cao, Q., & Levy, S. (2016). Exploring the impact of social media on hotel service performance: A sentimental analysis approach. Cornell Hospitality Quarterly, 57(3), 282-296.

Ferreira, J., Freitas, A., Guaraná, E., Lima, T., Rodrigues, J., & Giovannini, C. (2016). O impacto do boca-a-boca online: um estudo sobre a adoção de opiniões em comunidades de consumidores online. Tourism & Management Studies, 12(2), 28-37. 10.18089/tms.2016.12204

Francesco, G., & Roberta, G. (2019). Cross-country analysis of perception and emphasis of hotel attributes. Tourism Management, 74, 24-42.

Gerdt, S., Wagner, E., & Schewe, G. (2019). The relationship between sustainability and customer satisfaction in hospitality: An explorative investigation using eWOM as a data source. Tourism Management, 74, 155-172.

Han, H., Mankad, S., Gavirneni, N., & Verma, R. (2016). What guests really think of your hotel: Text analytics of online customer reviews. Cornell Hospitality Report, 16(2), 3-17.

Hu, Y., & Chen, K. (2016). Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings. International Journal of Information Management, 36(6), 929-944.

Instituto Nacional de Estatística (2019, March 24). Estatísticas do Turismo 2018. Instituto Nacional de Estatística, I. P.

Khoo-Lattimore, C., & Ekiz, E. (2014). Power in praise: Exploring online compliments on luxury hotels in Malaysia. Tourism and Hospitality Research, 14(3), 152-159.

Li, G., Law, R., Vu, H., Rong, J., & Zhao, X. (2015). Identifying emerging hotel preferences using emerging pattern mining technique. Tourism Management, 46, 311-321.

Lima, S., & Viana, F. (2017). Criterios competitivos en operaciones de servicios de hotelería en el contexto de online travel reviews. Estudios y Perspectivas en Turismo, 26(3), 585-606.

Limberger, P., Dos Anjos, F., De Souza Meira, J. & Dos Anjos, S. (2014). Satisfaction in hospitality on TripAdvisor. com: An analysis of the correlation between evaluation criteria and overall satisfaction. Tourism & Management Studies, 10(1), 59-65.

Limberger, P., Meira, J., Añaña, E., & Sohn, A. (2016). A qualidade dos serviços na hotelaria: um estudo com base nas on-line travel reviews (OTRS). Turismo-Visão e Ação, 18(3), 690-714.

Litvin, S. (2019). Hofstede, cultural differences, and TripAdvisor hotel reviews. International Journal of Tourism Research, 21(5), 712-717.

Loo, P., & Leung, R. (2018). A service failure framework of hotels in Taiwan: Adaptation of 7Ps marketing mix elements. Journal of Vacation Marketing, 24(1), 79-100.

Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167.

Mariani, M., & Predvoditeleva, M. (2019). How do online reviewers’ cultural traits and perceived experience influence hotel online ratings? International Journal of Contemporary Hospitality Management, 31(12), 4543-4573.

Mellinas, J., María-Dolores, S., & García, J. (2016). El uso de redes sociales por los hoteles como indicativo de gestión eficiente. Tourism & Management Studies, 12(2), 78-83.

Oliveira, A., Renda, A. & Correia, M. (2020). Online reviews: A pathway to improve hotel management. Dos Algarves: A Multidisciplinary e-Journal, 36, 108-126.

Phillips, P., Antonio, N., De Almeida, A., & Nunes, L. (2020). The influence of geographic and psychic distance on online hotel ratings. Journal of Travel Research, 59(4), 722-741.

PORDATA (2019, March 25). Alojamentos turísticos: total e por tipo de estabelecimento. Available at:

Registo Nacional de Turismo (2019, April 9). Consulta ao registo - Empreendimentos Turísticos. Available at:

Tontini, G., Dos Santos Bento, G., Milbratz, T., Volles, B., & Ferrari, D. (2017). Exploring the nonlinear impact of critical incidents on customers’ general evaluation of hospitality services. International Journal of Hospitality Management, 66, 106-116.

Travel BI (2020, April 6). Turismo em Portugal | 2018. Available at:

World Tourism Organization (2019, March 25). International Tourism Highlights, 2019 Edition. UNWTO. DOI: 10.18111/9789284421152

World Tourism Organization (2020, September 19). Impact of COVID-19 on global tourism made clear as UNWTO counts the cost of standstill. UNWTO.

Xu, X. (2018). Does traveler satisfaction differ in various travel group compositions? International Journal of Contemporary Hospitality Management, 30(3), 1663-1685.

Xu, X., Wang, X., Li, Y., & Haghighi, M. (2017). Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors. International Journal of Information Management, 37(6), 673-683.

Yi, S., Li, X., & Jai, T. (2018). Hotel guests’ perception of best green practices: A content analysis of online reviews. Tourism and Hospitality Research, 18(2), 191-202.

Yu, Y., Li, X., & Jai, T. (2017). The impact of green experience on customer satisfaction: Evidence from TripAdvisor. International Journal of Contemporary Hospitality Management, 29(5), 1340-1361.

Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111-121.

Zhou, L., Ye, S., Pearce, P., & Wu, M. (2014). Refreshing hotel satisfaction studies by reconfiguring customer review data. International Journal of Hospitality Management, 38, 1-10.






Tourism/Hospitality: Research Papers

How to Cite

Oliveira, A. S., Renda, A. I., Correia, M. B., & Antonio, N. (2022). Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets. Tourism & Management Studies, 18(1), 29-40.