Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets

Authors

DOI:

https://doi.org/10.18089/tms.2022.180103

Keywords:

online reviews, data mining, sentiment analysis, TripAdvisor, hotel management

Abstract

This study aims to verify how distinct markets evaluate hotels in the Algarve through the analysis of online reviews, in order to identify if satisfaction and dissatisfaction attributes are similar among some of the main markets of overnight stay tourists in the region. Online reviews of hotels in the Algarve, written in English, French as well as Portuguese and posted on Tripadvisor by British, French and Portuguese residents from January 2019 to December 2019 are analysed. After the analysis of 8,596 online textual reviews, the results demonstrated that not only satisfaction and dissatisfaction rates towards hotel attributes differ according to the language, but also that customers from different countries place dissimilar emphasis on hotel attributes. Besides extending the current research on the use of online reviews, the findings of this study also assist hoteliers to identify improvement opportunities. Although many studies on marketing segmentation through data mining have been conducted, this paper analyses the customer satisfaction of relevant tourist markets and suggests up-to-date practical implications for hoteliers.

Author Biographies

  • Anderson S. Oliveira, Universidade do Algarve
    Escola Superior de Gestão, Hotelaria e Turismo (ESGHT)
  • Ana I. Renda, Universidade do Algarve
    ESGHT & Centro de Investigação, Desenvolvimento e Inovação em Turismo – CiTUR & Centro de Investigação em Turismo, Sustentabilidade e Bem-estar - CinTurs
  • Marisol B. Correia, Universidade do Algarve e Universidade de Lisboa
    ESGHT & Centro de Investigação, Desenvolvimento e Inovação em Turismo – CiTUR & Centro de Investigação em Turismo, Sustentabilidade e Bem-estar - CinTurs, Universidade do Algarve & CEG-IST, Instituto Superior Técnico, Universidade de Lisboa
  • Nuno Antonio, Universidade Nova de Lisboa
    NOVA Information Management School

References

Ahani, A., Nilashi, M., & Ibrahim, O. (2019a). Travellers segmentation and choice prediction through online reviews: The case of Wellington’s hotels in New Zealand. Journal of Soft Computing and Decision Support Systems, 6(5), 23-30. https://jscdss.com/index.php/files/article/view/209/pdf_249

Ahani, A., Nilashi, M., Ibrahim, O., Sanzogni, L., & Weaven, S. (2019b). Market segmentation and travel choice prediction in spa hotels through TripAdvisor’s online reviews. International Journal of Hospitality Management, 80, 52-77. https://doi.org/10.1016/j.ijhm.2019.01.003

Ahani, A., Nilashi, M., Yadegaridehkordi, E., Sanzogni, L., Tarik, A., Knox, K., Samad, S., & Ibrahim, O. (2019c). Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services, 51, 331-343. https://doi.org/10.1016/j.jretconser.2019.06.014

Antonio, N., De Almeida, A., Nunes, L., Batista, F., & Ribeiro, R. (2018). Hotel online reviews: different languages, different opinions. Information Technology & Tourism, 18(1-4), 157-185. https://doi.org/10.1007/s40558-018-0107-x

Ban, H., Choi, H., Choi, E., Lee, S., & Kim, H. (2019). Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability, 11(23), 65-70. https://doi.org/10.3390/su11236570

Bayer, R., & Emir, O. (2017). Examination of urban hotels’ online review site performance with a comparative approach based on TripAdvisor and Booking. Journal of Business Research Turk, 9(3), 72-85. http://doi.org/10.20491/isarder.2017.288

Çal?, S., & Balaman, ?. (2019). Improved decisions for marketing, supply and purchasing: Mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment. Computers & Industrial Engineering, 129, 315-332. https://doi.org/10.1016/j.cie.2019.01.051

Duan, W., Yu, Y., Cao, Q., & Levy, S. (2016). Exploring the impact of social media on hotel service performance: A sentimental analysis approach. Cornell Hospitality Quarterly, 57(3), 282-296. https://doi.org/10.1177/1938965515620483

Ferreira, J., Freitas, A., Guaraná, E., Lima, T., Rodrigues, J., & Giovannini, C. (2016). O impacto do boca-a-boca online: um estudo sobre a adoção de opiniões em comunidades de consumidores online. Tourism & Management Studies, 12(2), 28-37. https://doi.org/ 10.18089/tms.2016.12204

Francesco, G., & Roberta, G. (2019). Cross-country analysis of perception and emphasis of hotel attributes. Tourism Management, 74, 24-42. https://doi.org/10.1016/j.tourman.2019.02.01

Gerdt, S., Wagner, E., & Schewe, G. (2019). The relationship between sustainability and customer satisfaction in hospitality: An explorative investigation using eWOM as a data source. Tourism Management, 74, 155-172. https://doi.org/10.1016/j.tourman.2019.02.010

Han, H., Mankad, S., Gavirneni, N., & Verma, R. (2016). What guests really think of your hotel: Text analytics of online customer reviews. Cornell Hospitality Report, 16(2), 3-17. https://scholarship.sha.cornell.edu/chrreports/4/

Hu, Y., & Chen, K. (2016). Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings. International Journal of Information Management, 36(6), 929-944. https://doi.org/10.1016/j.ijinfomgt.2016.06.003

Instituto Nacional de Estatística (2019, March 24). Estatísticas do Turismo 2018. Instituto Nacional de Estatística, I. P. https://www.ine.pt/xurl/pub/358629548

Khoo-Lattimore, C., & Ekiz, E. (2014). Power in praise: Exploring online compliments on luxury hotels in Malaysia. Tourism and Hospitality Research, 14(3), 152-159. https://doi.org/10.1177/1467358414539970

Li, G., Law, R., Vu, H., Rong, J., & Zhao, X. (2015). Identifying emerging hotel preferences using emerging pattern mining technique. Tourism Management, 46, 311-321. https://doi.org/10.1016/j.tourman.2014.06.015

Lima, S., & Viana, F. (2017). Criterios competitivos en operaciones de servicios de hotelería en el contexto de online travel reviews. Estudios y Perspectivas en Turismo, 26(3), 585-606. https://dialnet.unirioja.es/descarga/articulo/6328656.pdf

Limberger, P., Dos Anjos, F., De Souza Meira, J. & Dos Anjos, S. (2014). Satisfaction in hospitality on TripAdvisor. com: An analysis of the correlation between evaluation criteria and overall satisfaction. Tourism & Management Studies, 10(1), 59-65. https://tmstudies.net/index.php/ectms/article/view/648/1156

Limberger, P., Meira, J., Añaña, E., & Sohn, A. (2016). A qualidade dos serviços na hotelaria: um estudo com base nas on-line travel reviews (OTRS). Turismo-Visão e Ação, 18(3), 690-714. http://www.redalyc.org/articulo.oa?id=261056061012

Litvin, S. (2019). Hofstede, cultural differences, and TripAdvisor hotel reviews. International Journal of Tourism Research, 21(5), 712-717. https://doi.org/10.1002/jtr.2298

Loo, P., & Leung, R. (2018). A service failure framework of hotels in Taiwan: Adaptation of 7Ps marketing mix elements. Journal of Vacation Marketing, 24(1), 79-100. https://doi.org/10.1177/1356766716682555

Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016

Mariani, M., & Predvoditeleva, M. (2019). How do online reviewers’ cultural traits and perceived experience influence hotel online ratings? International Journal of Contemporary Hospitality Management, 31(12), 4543-4573. https://doi.org/10.1108/IJCHM-11-2018-0927

Mellinas, J., María-Dolores, S., & García, J. (2016). El uso de redes sociales por los hoteles como indicativo de gestión eficiente. Tourism & Management Studies, 12(2), 78-83. https://doi.org/10.18089/tms.2016.12209

Oliveira, A., Renda, A. & Correia, M. (2020). Online reviews: A pathway to improve hotel management. Dos Algarves: A Multidisciplinary e-Journal, 36, 108-126. https://doi.org/10.18089/DAMeJ.2020.36.7

Phillips, P., Antonio, N., De Almeida, A., & Nunes, L. (2020). The influence of geographic and psychic distance on online hotel ratings. Journal of Travel Research, 59(4), 722-741. https://doi.org/10.1177/0047287519858400

PORDATA (2019, March 25). Alojamentos turísticos: total e por tipo de estabelecimento. Available at: https://www.pordata.pt/Portugal/Alojamentos+tur%c3%adsticos+total+e+por+tipo+de+estabelecimento-2562-211752

Registo Nacional de Turismo (2019, April 9). Consulta ao registo - Empreendimentos Turísticos. Available at: https://rnt.turismodeportugal.pt/RNET/Registos.ConsultaRegisto.aspx?Origem=CP&MostraFiltro=True

Tontini, G., Dos Santos Bento, G., Milbratz, T., Volles, B., & Ferrari, D. (2017). Exploring the nonlinear impact of critical incidents on customers’ general evaluation of hospitality services. International Journal of Hospitality Management, 66, 106-116. https://doi.org/10.1016/j.ijhm.2017.07.011

Travel BI (2020, April 6). Turismo em Portugal | 2018. Available at: https://travelbi.turismodeportugal.pt/ptpt/Documents/Turismo%20em%20Portugal/turismo-em-portugal-2018.pdf

World Tourism Organization (2019, March 25). International Tourism Highlights, 2019 Edition. UNWTO. DOI: 10.18111/9789284421152

World Tourism Organization (2020, September 19). Impact of COVID-19 on global tourism made clear as UNWTO counts the cost of standstill. UNWTO. https://webunwto.s3.eu-west-1.amazonaws.com/s3fs-public/2020-07/200728-barometer-en.pdf

Xu, X. (2018). Does traveler satisfaction differ in various travel group compositions? International Journal of Contemporary Hospitality Management, 30(3), 1663-1685. https://doi.org/10.1108/IJCHM-03-2017-0171

Xu, X., Wang, X., Li, Y., & Haghighi, M. (2017). Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors. International Journal of Information Management, 37(6), 673-683. https://doi.org/10.1016/j.ijinfomgt.2017.06.004

Yi, S., Li, X., & Jai, T. (2018). Hotel guests’ perception of best green practices: A content analysis of online reviews. Tourism and Hospitality Research, 18(2), 191-202. https://doi.org/10.1177/1467358416637251

Yu, Y., Li, X., & Jai, T. (2017). The impact of green experience on customer satisfaction: Evidence from TripAdvisor. International Journal of Contemporary Hospitality Management, 29(5), 1340-1361. https://doi.org/10.1108/IJCHM-07-2015-0371

Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111-121. https://doi.org/10.1016/j.ijhm.2018.03.017

Zhou, L., Ye, S., Pearce, P., & Wu, M. (2014). Refreshing hotel satisfaction studies by reconfiguring customer review data. International Journal of Hospitality Management, 38, 1-10. https://doi.org/10.1016/j.ijhm.2013.12.004

Downloads

Published

31.01.2022

Issue

Section

Tourism/Hospitality: Research Papers

How to Cite

Oliveira, A. S., Renda, A. I., Correia, M. B., & Antonio, N. (2022). Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets. Tourism & Management Studies, 18(1), 29-40. https://doi.org/10.18089/tms.2022.180103