Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets
DOI:
https://doi.org/10.18089/tms.2022.180103Keywords:
online reviews, data mining, sentiment analysis, TripAdvisor, hotel managementAbstract
This study aims to verify how distinct markets evaluate hotels in the Algarve through the analysis of online reviews, in order to identify if satisfaction and dissatisfaction attributes are similar among some of the main markets of overnight stay tourists in the region. Online reviews of hotels in the Algarve, written in English, French as well as Portuguese and posted on Tripadvisor by British, French and Portuguese residents from January 2019 to December 2019 are analysed. After the analysis of 8,596 online textual reviews, the results demonstrated that not only satisfaction and dissatisfaction rates towards hotel attributes differ according to the language, but also that customers from different countries place dissimilar emphasis on hotel attributes. Besides extending the current research on the use of online reviews, the findings of this study also assist hoteliers to identify improvement opportunities. Although many studies on marketing segmentation through data mining have been conducted, this paper analyses the customer satisfaction of relevant tourist markets and suggests up-to-date practical implications for hoteliers.
References
Ahani, A., Nilashi, M., & Ibrahim, O. (2019a). Travellers segmentation and choice prediction through online reviews: The case of Wellington’s hotels in New Zealand. Journal of Soft Computing and Decision Support Systems, 6(5), 23-30. https://jscdss.com/index.php/files/article/view/209/pdf_249
Ahani, A., Nilashi, M., Ibrahim, O., Sanzogni, L., & Weaven, S. (2019b). Market segmentation and travel choice prediction in spa hotels through TripAdvisor’s online reviews. International Journal of Hospitality Management, 80, 52-77. https://doi.org/10.1016/j.ijhm.2019.01.003
Ahani, A., Nilashi, M., Yadegaridehkordi, E., Sanzogni, L., Tarik, A., Knox, K., Samad, S., & Ibrahim, O. (2019c). Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services, 51, 331-343. https://doi.org/10.1016/j.jretconser.2019.06.014
Antonio, N., De Almeida, A., Nunes, L., Batista, F., & Ribeiro, R. (2018). Hotel online reviews: different languages, different opinions. Information Technology & Tourism, 18(1-4), 157-185. https://doi.org/10.1007/s40558-018-0107-x
Ban, H., Choi, H., Choi, E., Lee, S., & Kim, H. (2019). Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability, 11(23), 65-70. https://doi.org/10.3390/su11236570
Bayer, R., & Emir, O. (2017). Examination of urban hotels’ online review site performance with a comparative approach based on TripAdvisor and Booking. Journal of Business Research Turk, 9(3), 72-85. http://doi.org/10.20491/isarder.2017.288
Çal?, S., & Balaman, ?. (2019). Improved decisions for marketing, supply and purchasing: Mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment. Computers & Industrial Engineering, 129, 315-332. https://doi.org/10.1016/j.cie.2019.01.051
Duan, W., Yu, Y., Cao, Q., & Levy, S. (2016). Exploring the impact of social media on hotel service performance: A sentimental analysis approach. Cornell Hospitality Quarterly, 57(3), 282-296. https://doi.org/10.1177/1938965515620483
Ferreira, J., Freitas, A., Guaraná, E., Lima, T., Rodrigues, J., & Giovannini, C. (2016). O impacto do boca-a-boca online: um estudo sobre a adoção de opiniões em comunidades de consumidores online. Tourism & Management Studies, 12(2), 28-37. https://doi.org/ 10.18089/tms.2016.12204
Francesco, G., & Roberta, G. (2019). Cross-country analysis of perception and emphasis of hotel attributes. Tourism Management, 74, 24-42. https://doi.org/10.1016/j.tourman.2019.02.01
Gerdt, S., Wagner, E., & Schewe, G. (2019). The relationship between sustainability and customer satisfaction in hospitality: An explorative investigation using eWOM as a data source. Tourism Management, 74, 155-172. https://doi.org/10.1016/j.tourman.2019.02.010
Han, H., Mankad, S., Gavirneni, N., & Verma, R. (2016). What guests really think of your hotel: Text analytics of online customer reviews. Cornell Hospitality Report, 16(2), 3-17. https://scholarship.sha.cornell.edu/chrreports/4/
Hu, Y., & Chen, K. (2016). Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings. International Journal of Information Management, 36(6), 929-944. https://doi.org/10.1016/j.ijinfomgt.2016.06.003
Instituto Nacional de Estatística (2019, March 24). Estatísticas do Turismo 2018. Instituto Nacional de Estatística, I. P. https://www.ine.pt/xurl/pub/358629548
Khoo-Lattimore, C., & Ekiz, E. (2014). Power in praise: Exploring online compliments on luxury hotels in Malaysia. Tourism and Hospitality Research, 14(3), 152-159. https://doi.org/10.1177/1467358414539970
Li, G., Law, R., Vu, H., Rong, J., & Zhao, X. (2015). Identifying emerging hotel preferences using emerging pattern mining technique. Tourism Management, 46, 311-321. https://doi.org/10.1016/j.tourman.2014.06.015
Lima, S., & Viana, F. (2017). Criterios competitivos en operaciones de servicios de hotelería en el contexto de online travel reviews. Estudios y Perspectivas en Turismo, 26(3), 585-606. https://dialnet.unirioja.es/descarga/articulo/6328656.pdf
Limberger, P., Dos Anjos, F., De Souza Meira, J. & Dos Anjos, S. (2014). Satisfaction in hospitality on TripAdvisor. com: An analysis of the correlation between evaluation criteria and overall satisfaction. Tourism & Management Studies, 10(1), 59-65. https://tmstudies.net/index.php/ectms/article/view/648/1156
Limberger, P., Meira, J., Añaña, E., & Sohn, A. (2016). A qualidade dos serviços na hotelaria: um estudo com base nas on-line travel reviews (OTRS). Turismo-Visão e Ação, 18(3), 690-714. http://www.redalyc.org/articulo.oa?id=261056061012
Litvin, S. (2019). Hofstede, cultural differences, and TripAdvisor hotel reviews. International Journal of Tourism Research, 21(5), 712-717. https://doi.org/10.1002/jtr.2298
Loo, P., & Leung, R. (2018). A service failure framework of hotels in Taiwan: Adaptation of 7Ps marketing mix elements. Journal of Vacation Marketing, 24(1), 79-100. https://doi.org/10.1177/1356766716682555
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
Mariani, M., & Predvoditeleva, M. (2019). How do online reviewers’ cultural traits and perceived experience influence hotel online ratings? International Journal of Contemporary Hospitality Management, 31(12), 4543-4573. https://doi.org/10.1108/IJCHM-11-2018-0927
Mellinas, J., María-Dolores, S., & García, J. (2016). El uso de redes sociales por los hoteles como indicativo de gestión eficiente. Tourism & Management Studies, 12(2), 78-83. https://doi.org/10.18089/tms.2016.12209
Oliveira, A., Renda, A. & Correia, M. (2020). Online reviews: A pathway to improve hotel management. Dos Algarves: A Multidisciplinary e-Journal, 36, 108-126. https://doi.org/10.18089/DAMeJ.2020.36.7
Phillips, P., Antonio, N., De Almeida, A., & Nunes, L. (2020). The influence of geographic and psychic distance on online hotel ratings. Journal of Travel Research, 59(4), 722-741. https://doi.org/10.1177/0047287519858400
PORDATA (2019, March 25). Alojamentos turísticos: total e por tipo de estabelecimento. Available at: https://www.pordata.pt/Portugal/Alojamentos+tur%c3%adsticos+total+e+por+tipo+de+estabelecimento-2562-211752
Registo Nacional de Turismo (2019, April 9). Consulta ao registo - Empreendimentos Turísticos. Available at: https://rnt.turismodeportugal.pt/RNET/Registos.ConsultaRegisto.aspx?Origem=CP&MostraFiltro=True
Tontini, G., Dos Santos Bento, G., Milbratz, T., Volles, B., & Ferrari, D. (2017). Exploring the nonlinear impact of critical incidents on customers’ general evaluation of hospitality services. International Journal of Hospitality Management, 66, 106-116. https://doi.org/10.1016/j.ijhm.2017.07.011
Travel BI (2020, April 6). Turismo em Portugal | 2018. Available at: https://travelbi.turismodeportugal.pt/ptpt/Documents/Turismo%20em%20Portugal/turismo-em-portugal-2018.pdf
World Tourism Organization (2019, March 25). International Tourism Highlights, 2019 Edition. UNWTO. DOI: 10.18111/9789284421152
World Tourism Organization (2020, September 19). Impact of COVID-19 on global tourism made clear as UNWTO counts the cost of standstill. UNWTO. https://webunwto.s3.eu-west-1.amazonaws.com/s3fs-public/2020-07/200728-barometer-en.pdf
Xu, X. (2018). Does traveler satisfaction differ in various travel group compositions? International Journal of Contemporary Hospitality Management, 30(3), 1663-1685. https://doi.org/10.1108/IJCHM-03-2017-0171
Xu, X., Wang, X., Li, Y., & Haghighi, M. (2017). Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors. International Journal of Information Management, 37(6), 673-683. https://doi.org/10.1016/j.ijinfomgt.2017.06.004
Yi, S., Li, X., & Jai, T. (2018). Hotel guests’ perception of best green practices: A content analysis of online reviews. Tourism and Hospitality Research, 18(2), 191-202. https://doi.org/10.1177/1467358416637251
Yu, Y., Li, X., & Jai, T. (2017). The impact of green experience on customer satisfaction: Evidence from TripAdvisor. International Journal of Contemporary Hospitality Management, 29(5), 1340-1361. https://doi.org/10.1108/IJCHM-07-2015-0371
Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111-121. https://doi.org/10.1016/j.ijhm.2018.03.017
Zhou, L., Ye, S., Pearce, P., & Wu, M. (2014). Refreshing hotel satisfaction studies by reconfiguring customer review data. International Journal of Hospitality Management, 38, 1-10. https://doi.org/10.1016/j.ijhm.2013.12.004
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Tourism & Management Studies
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
The journal retains published articles’ copyrights, but they are simultaneously licensed under the Creative Commons Attribution License (CC BY-NC-ND), which allows individuals’ to share the relevant papers as long as authorship and publication in this journal are duly acknowledged.